Methane Activation by Laser-Ablated V, Nb, and Ta Atoms: Formation of CH₃-MH, CH₂=MH₂, CH=MH₃⁻, and (CH₃)₂MH₂

Han-Gook Cho and Lester Andrews*

Department of Chemistry, University of Incheon, 177 Dohwa-dong, Nam-ku, Incheon 402-749, South Korea, and Department of Chemistry, University of Virginia, P.O. Box 400319, Charlottesville, Virginia 22904-4319

Received: December 2, 2005; In Final Form: January 25, 2006

Methane activation by group 5 transition-metal atoms in excess argon and the matrix infrared spectra of reaction products have been investigated. Vanadium forms only the monohydrido methyl complex (CH₃– VH) in reaction with CH₄ and upon irradiation. On the other hand, the heavier metals form methyl hydride and methylidene dihydride complexes (CH₃–MH and CH₂=MH₂) along with the methylidyne trihydride anion complexes (CH=MH₃⁻). The neutral products, particularly the methylidene complex, increase markedly on irradiation whereas the anionic product depletes upon UV irradiation or addition of a trace of CCl₄ or CBr₄ to trap electrons. Other absorptions that emerge on irradiation and annealing increase markedly at higher precursor concentration and are attributed to a higher-order product ((CH₃)₂MH₂)). Spectroscopic evidence suggests that the agostic Nb and Ta methylidene dihydride complexes have two identical metal–hydrogen bonds.

Introduction

Group 4-6 transition metals form alkylidene complexes that are important in synthetic chemistry.1 Although tantalum derivatives were discovered first,^{2,3} alkylidene chemistry is dominated by group 6, and stable group 4 alkylidene complexes are rare.¹ Naked group 4 metal atoms react with methane and methyl halides to produce simple methyl and methylidene complexes (CH_3 -MX and CH_2 =MHX, X = H, F, Cl, Br, and I) along with a dimethyl complex $((CH_3)_2MX_2)^{4-11}$ whereas group 6 transition metals form methyl, methylidene, and methylidyne hydride complexes (CH3-MX, CH2=MHX, and $CH \equiv MH_2X$).^{12–15} Several of the products are photoreversible via α -hydrogen migration.^{4,7,11,12-15} These simple methylidene and methylidyne complexes provide a basis to compare structures and substituent effects more easily than for much larger high-oxidation-state complexes. Such complexes are used for alkane activation and catalytic metathesis of alkenes, alkynes, and cyclic compounds, and they are typically generated by intramolecular α -hydrogen elimination from a bis(alkyl) precursor.^{1,16,17} Large substituents are required to stabilize the electrondeficient metal center, and many of the complexes so formed are agostic. We have found greater reactivity for group 4 and 6 metal atoms with methyl fluoride than with methane, and the group 5 metal Nb reactions with CH₃F gave analogous products starting with activation of the C-F bond.¹⁸

Density functional theory calculations using large basis sets show that the CH₂ group in the simple methylidene complexes (CH₂=MHX) is considerably distorted^{4–15,18} and that the two metal-hydrogen bonds are not equivalent in the methylidene hydride complexes (CH₂=MH₂).^{8–13} The effect of agostic distortion is identified accordingly in the infrared spectra of the methylidene dihydride complexes of groups 4 and 6 transition metals formed from CH₂D₂.^{8–13} Earlier theoretical studies using minimum basis sets failed to characterize the agostic distor-

* To whom correspondence should be addressed. E-mail: lsa@virginia.edu.

tion, ^{19,20} and more recent multiconfiguration calculations fixed the C_{2v} structure and found it to be stable.^{21,22}

Group 5 transition metals have been important in the progress of coordination chemistry, forming various complexes with carbon-metal bonds.¹ Although vanadium produces complexes with CO and unsaturated hydrocarbons, it rarely forms highoxidation-state complexes.¹ Niobium alkylidene complexes have been mostly synthesized via α -hydrogen abstraction reactions, and one-electron oxidation of a dibenzyl niobium (IV) complex led to a cationic Nb(V) benzylidene complex.²³ An anionic Nb methylidene complex was prepared by the unusual bimetallic cleavage of a carbon-oxygen bond. However, attempts to provide a Nb methylidyne complex have not been successful, leading to other related complexes instead.¹ In contrast, Ta has lead advances in the chemistry of high-oxidation-state complexes. Numerous Ta alkylidene complexes have been prepared, following the first preparation of $(\eta^5-C_5H_5)_2Ta(CH_2)(CH_3)$ and (Me₃CCH₂)₃Ta(CHCMe₃) by α -hydrogen abstraction.² Several Ta alkylidyne complexes have been reported since the first Ta alkylidyne complexes synthesized by Schrock,^{3,24} but Ta methylidyne complexes are not common. It is noteworthy that a C_{3v} structure has been calculated for the simple CH=TaH₃⁻ anion complex.21

In this investigation, reactions of laser-ablated V, Nb, and Ta atoms with methane diluted in argon were carried out, and the products isolated in an argon matrix were investigated by means of infrared spectroscopy. Results indicate that only one C–H insertion reaction product is formed by vanadium, whereas four products including an anionic methylidyne hydride complex are identified for each heavier metal on the basis of the vibrational spectra and their variations upon photolysis, annealing, and the addition of a trace of CCl₄ or CBr₄ to trap ablated electrons. Unlike the previously studied methylidene dihydride complexes of groups 4 and 6 transition metals,^{8–13} the agostic Nb and Ta methylidene hydride complexes appear to have structures with two identical metal–hydrogen bonds.

Figure 1. IR spectra in the regions of 1600-1500 and 700-450 cm⁻¹ for laser-ablated V atoms co-deposited with CH₄ in excess argon at 8 K. (a) V + 2% CH₄ in Ar co-deposited for 1 h. (b) After broad-band photolysis with a filter ($\lambda > 420$ nm) for 20 min. (c) After broad-band photolysis with a filter ($240 < \lambda < 380$ nm) for 20 min. (d) After broad-band photolysis with a filter ($\lambda > 220$ nm) for 20 min. (e) After annealing to 26 K. (f) After annealing to 34 K. Insertion product absorptions are marked **i**. The weak band labeled w is due to water impurity.

Experimental and Computational Methods

Laser ablated group 5 metal atoms (Johnson-Matthey) were reacted with CH₄ (Matheson, UHP grade), ¹³CH₄, CD₄, and CH₂D₂ (Cambridge Isotopic Laboratories) in excess argon (MG Industries) during condensation on a CsI window at 8 K using methods previously described.^{25–27} Concentrations of gas mixtures are typically 1–5% in argon. In addition, CCl₄ (0.04– 0.2%) or CBr₄ (0.1%) was included in the gas mixture to capture electrons produced in the laser-ablation process in complimentary experiments.²⁶ After reaction, infrared spectra were recorded at a resolution of 0.5 cm⁻¹ using a Nicolet 550 spectrometer with an HgCdTe type-B detector. Samples were then irradiated by a mercury arc lamp (175 W, globe removed) using a combination of optical filters, were annealed, and more spectra were recorded.

Complementary density functional theory (DFT) calculations were carried out using the Gaussian 03 package,²⁸ B3LYP density functional, 6-311++G(3df,3pd) basis sets for C, H, V and SDD pseudopotential and basis set for Nb and Ta to provide a consistent set of vibrational frequencies for the reaction products. BPW91, MP2, or CCSD calculations were done to compliment the B3LYP results. Geometries were fully relaxed during optimization, and the optimized geometry was confirmed by vibrational analysis. All the vibrational frequencies were calculated analytically. In calculation of the binding energy of a metal complex, the zero-point energy is included.

Results

Reactions of V, Nb, and Ta atoms with methane isotopomers were carried out, and the observed vibrational characteristics of the products are compared with the calculated results.

 $V + CH_4$. Vanadium is very reactive with CH₄, probably one of the most reactive among group 4–6 transition metals. The spectra observed from the V + CH₄ reaction products are shown in Figure 1. Although the spectra are relatively simple, a very strong product absorption is observed at 1534.4 cm⁻¹

TABLE 1: Observed and Calculated FundamentalFrequencies of CH3-VH Isotopomers in the Ground ⁴A"Electronic State^a

	C	H ₃ -VH			CD ₃ -VD				
approximate	fre	eq		fr	eq				
description	obs	calc	int	obs	calc	int			
A' CH ₃ str		3066.7	11		2268.1	4			
A' CH3 str		2987.6	7		2139.1	2			
A' V–H str	1534.4	1631.5	336	1106.5	1166.1	177			
A' CH3 scis		1423.3	1		1033.2	1			
A' CH ₃ deform		1129.4	0		887.5	6			
A' CVH bend	543.8	560.5	105	464.7	456.8	79.2			
A' C–V str	510.1	487.2	41	453.6	412.3	12			
A' CH ₃ rock		332.9	47		238.2	26			
A" CH ₃ str		3069.2	25		2268.1	10			
A" CH ₃ scis		1419.8	3		1030.9	3			
A" CH ₂ twist		383.3	1		284.7	2			
A" CH3 distort		91.5	59		67.1	32.8			

^{*a*} B3LYP/6-311++G(3df,3pd) level. Frequencies and intensities are in cm^{-1} and km/mol. Infrared intensities are calculated values.

(marked **i**). The absorption grows about 20% upon visible (hereafter "visible" denotes ">420 nm") photolysis, almost doubles upon following near UV (hereafter "near UV" denotes "240–380 nm") photolysis, and grows another 100% upon full arc (hereafter full arc denotes ">220 nm") irradiation. These irradiations increase the absorption at 1534.4 cm⁻¹ and associated (Figure 1d) absorptions at 541.6 and 510.1 cm⁻¹.

Deuteration causes a shift by a larger factor in the hydrogen stretching than the lower frequency region. A strong absorption at 1106.5 cm⁻¹ and a weak absorption at 464.7 cm⁻¹ show the same changes in intensity on irradiation and annealing. Table 1 collects the observed frequencies. The CH₃ and CD₃ radicals are also observed in our spectra.^{9–13,29}

 $Nb + CH_4$. In the case of $Nb + CH_4$, four different sets of product absorptions are observed on the basis of the variation in intensity upon photolysis, annealing, and the addition of CCl₄. The spectra from $Nb + CH_4$ reaction are shown in Figure 2. In the Nb-H stretching region (1750-1450 cm⁻¹), strong diagnostic product absorptions are observed with about 1:2 intensity ratio at 1680.7 and 1652.5 cm⁻¹ (marked **m**) in the spectra. They are found even in the spectrum with a trace of CCl₄ (Figure 3a, after visible photolysis following deposition). These bands show dramatic (more than 300%) and slight (30%) increases in intensity upon visible and near UV photolysis, respectively, and increase another 100% upon full-arc irradiation. They sharpen but show only a slight decrease in intensity on annealing up to 26 K. Three additional absorptions at 805.4, 547.1, and 480.4 cm⁻¹ show the same intensity variation, particularly the dramatic increase in intensity upon visible photolysis.

Below the **m** absorptions in the Nb–H stretching region, a weak absorption marked **i** is observed at 1611.4 cm⁻¹ in the water residue absorption region. This absorption increases moderately in the process of photolysis, and gradually decreases upon annealing while neighboring water absorptions decrease.

On the lower frequency side of the Nb–H stretching region, below NbH₂ at 1569.1 cm⁻¹ and NbH at 1555.9 cm⁻¹,³⁰ two absorptions are observed at 1542.5 and 1489.5 cm⁻¹ (marked **a**), which remain almost unchanged upon visible and near UV photolysis but decrease substantially upon full-arc irradiation and annealing. A more dramatic change in intensity occurs in the spectrum with trace of CCl₄, where the two absorptions vanish while other absorptions are still evident

Above the **m** absorptions in the Nb–H stretching region, new absorptions are observed at 1717.5 and 1686.3 cm⁻¹ marked **di**. These absorptions are weak in the original spectrum after

Figure 2. IR spectra in the regions of 1750-1450 and 850-450 cm⁻¹ for laser-ablated Nb atoms co-deposited with CH₄ in excess argon at 8 K. (a) After broad-band photolysis with a filter ($\lambda > 420$ nm) following co-deposition of Nb + [2% CH₄ + 0.04% CCl₄] in Ar for 1 h. (b) Nb + 2% CH₄ in Ar co-deposited for 1 h. (c) After broad-band photolysis with a filter ($\lambda > 420$ nm) for 20 min. (d) After broad-band photolysis with a filter ($\lambda > 420$ nm) for 20 min. (d) After broad-band photolysis with a filter ($\lambda > 420$ nm) for 20 min. (e) After broad-band photolysis with a filter ($\lambda > 220$ nm) for 20 min. (f) After annealing to 26 K. (g) After annealing to 32 K. m, i, a, and di stand for the product absorption groups.

Figure 3. IR spectra in the regions of 1250-1050 and 780-430 cm⁻¹ for laser-ablated Nb atoms co-deposited with CD₄ in excess argon at 8 K. (a) After broad-band photolysis with a filter ($\lambda > 420$ nm) following co-deposition of Nb + [2% CD₄ + 0.1% CCl₄] in Ar for 1 h. (b) Nb + 2% CD₄ in Ar co-deposited for 1 h. (c) After broad-band photolysis with a filter ($\lambda > 420$ nm) for 20 min. (d) After broad-band photolysis with a filter ($\lambda > 420$ nm) for 20 min. (d) After broad-band photolysis with a filter ($\lambda > 420$ nm) for 20 min. (d) After broad-band photolysis with a filter ($\lambda > 420$ nm) for 20 min. (e) After broad-band photolysis with a filter ($\lambda > 220$ nm) for 20 min. (f) After annealing to 26 K. (g) After annealing to 32 K. m, i, a, and di stand for the product absorption groups.

deposition, but they increase on full-arc irradiation and sharpen on annealing.

Isotopic substitution of the methane precursor provides essential information. The product absorptions of Nb + CH₄ isotopomers observed in this study are listed in Table 2 and compared with calculated values for possible product molecules in Tables 3–6. Parts a and b of Table 3 report frequencies calculated for two different low-energy structural configurations of the CH₂=NbH₂ product complex. The ¹³C substitution has no significant effect on the absorptions in the hydrogen stretching frequency region, but small shifts are observed in the low-frequency region. All bands are shifted with CD_4 by larger factors in the upper than in the lower frequency region.

In Figure 3 (Nb + CD₄), two strong absorptions marked **m** are observed at 1206.0 and 1189.9 cm⁻¹ and another one at 736.8 cm⁻¹. They are also evident in the spectrum with trace of CCl₄ (after visible photolysis following deposition). Though similar, they show larger variation in intensity on irradiation than in the case of Nb + CH₄. Also shown in Figure 3 is the **i** absorption the at 1159.1 cm⁻¹.

Two absorptions marked **a** are observed at 1103.7 and 1076.1 cm^{-1} . They decrease slightly and more substantially upon near

TABLE 2: Frequencies of Product Absorptions Observed from Reactions of Methane with Nb in Excess Argon^a

group	CH_4	CD_4	¹³ CH ₄	CH_2D_2	description
i	1611.4, 1608.3	1159.1	1611.4	1611.0, 1608.2	Nb-H str
m	1680.7, 1680.0 (sh)	1206.0, 1205.8 (sh)	1680.7, 1680.1 (sh)	1680.7, 1666.4 , 1652.5	NbH ₂ sym str
	1652.5 , 1651.0	1189.9, 1188.7	1652.5, 1650.9	1205.5, 1198.4 , 1188.7	NbH ₂ antisym str
	805.4	736.8	784.5		C=Nb str
	547.1		546.6		CH ₂ wag
	480.4		480.4		NbH2 rock
а	1542.5	1103.7	1542.2	1524.3	NbH ₃ sym str
	1489.5	1076.1	1489.5	1506.7, 1488.2	NbH3 antisym str
di	1717.5	1231.5	1717.5	1717.1, 1707.9, 1694.5, 1686.3	NbH ₂ sym str
	1686.3	1213.0	1686.3	1217.8, 1212.8	NbH ₂ antisym str

^a All frequencies are in cm⁻¹. Stronger absorptions are bold. Description gives major coordinate.

TABLE 3: Observed and Calculated Fundamental Frequencies of CH₂=NbH₂ Isotopomers

	CH ₂ =NbH ₂						CD ₂ =NbD ₂				$^{13}CH_2 = NbH_2$				
approximate		BPW	91	B3LY	ζP		BPW	91	B3LY	ζP		BPW	91	B3L	ΥP
description	obs	freq	int	freq	int	obs	freq	int	freq	int	obs	freq	int	freq	int
A' CH ₂ str		3156.5	6	3183.2	1		2237.8	9	2357.4	3		3145.7	6	3172.1	1
A' C-H str		2537.6	2	2941.0	2		1847.1	2	2138.3	3		2531.8	2	2934.4	2
A' NbH ₂ str	1680.7	1745.6	147	1748.9	234	1206.0	1240.1	125	1242.6	150	1680.7	1745.6	146	1748.9	234
A' NbH ₂ str	1652.5	1736.8	335	1734.2	482	1189.9	1237.8	122	1235.2	219	1652.5	1736.8	336	1734.2	482
A' CH ₂ scis		1364.4	26	1301.2	12		1037.6	17	1030.4	20		1358.6	26	1291.3	11
A' C=Nb str	805.4	849.5	70	806.0	94	736.8	763.1	45	687.2	44	784.5	827.6	70	795.6	93
A' NbH2 scis		722.0	7	732.9	4		553.9	2	544.7	10		717.1	7	723.4	4
A' CH ₂ wag	547.1	608.6	75	672.5	119		461.5	60	521.4	82	546.6	603.7	71	667.0	116
A' NbH2 rock		656.8	36	584.3	5		493.6	6	442.6	3		654.6	39	581.1	5
A" CH2 twist	480.4	487.3	75	337.2	10		348.2	39	241.1	5	480.4	487.0	74	336.9	10
A" CH2 rock		529.3	44	234.8	28		377.8	24	169.2	14		528.7	44	234.4	29
A" NbH2 twist		198.2	24	167.0	115		140.7	12	121.8	59		198.2	24	166.8	115

(b) Configuration 2 in the C_s Symmetry Ground ²A' Electronic State^b

	C	$H_2 = NbH_2$		CD ₂ =NbD ₂			13	CH ₂ =NbH ₂		CHD=NbHD			
approximate	mate freq			freq			freq			freq			
description	obs	calc	int	obs	calc	int	obs	calc	int	obs	calc	int	
A' C-H str		3162.9	7		2342.8	10		3152.1	7		2486.9	15	
A' C-H str		2462.2	16		1792.0	6		2456.6	17		2314.1	10	
A' Nb-H str	1680.7	1750.5	157	1206.0	1242.6	79	1680.7	1750.4	157	1666.4	1747.4	232	
A' CH ₂ scis		1349.2	27		1033.7	16		1342.8	27		1260.8	25	
A' C=Nb str	805.4	852.3	66	736.8	762.5	46	784.5	830.0	65	805.4	810.8	53	
A' NbH ₂ scis		677.7	78		492.3	16		677.3	78		589.4	60	
A' NbH ₂ wag		621.0	32		486.6	40		615.1	32		538.8	26	
A' CH ₂ rock	547.1	545.3	57		390.5	27	546.6	544.9	57		466.6	28	
A" Nb-H str	1652.5	1744.8	311	1189.9	1245.2	161	1652.5	1744.8	311	1198.4	1243.8	114	
A" CH ₂ wag		582.9	10		444.5	9		578.8	8		495.4	29	
A" NbH2 twist	480.4	471.8	69		336.8	36	480.4	471.5	68		359.3	34	
A" CH2 twist		310.8	6		220.7	3		310.7	6		286.6	8	

^{*a*} B3LYP and BPW91/6-311++G(3df,3pd)/SDD levels. Frequencies and intensities are in cm^{-1} and km/mol. Infrared intensities are calculated values. ^{*b*} BPW91/6-311++G(3df,3pd)/SDD level. Frequencies and intensities are in cm^{-1} and km/mol. Infrared intensities are calculated values.

UV and full arc irradiation, respectively, and later slightly recover in the early stage of annealing and decrease at higher temperature. Analogous to the CH₄ counterparts, their frequencies are lower than the deuterium stretching frequencies of deuterated niobium hydrides (1128.5 cm⁻¹ for NbD₂ and 1112.2 cm⁻¹ for NbD).³⁰ Addition of a trace of CCl₄ completely depletes the absorptions (Figure 3a). On the blue side of the **m** absorptions in the Nb–D stretching region, the two absorptions marked **di** at 1231.5 and 1213.0 cm⁻¹ become apparent in the process of photolysis and grow further on the early stage of annealing.

 CH_2D_2 provides additional diagnostic absorptions in the Nb–H and Nb–D stretching regions (Figure 4). Two strong absorptions marked **m** appear at 1666.4 and 1198.4 cm⁻¹, each at the middle of the metal–hydrogen or metal-deuterium

stretching absorption pair, suggesting that the product responsible for **m** absorptions in fact contains two identical metal hydrogen bonds. Both absorptions increase dramatically upon visible, near UV, and full arc irradiation, respectively (1000% in total!). The three absorptions at 1524.3, 1506.7, and 1488.2 cm⁻¹ (marked **a**) decrease substantially upon full arc irradiation and recover slightly in the early stage of annealing.

At higher concentrations of the precursor, the absorptions marked **di** become much stronger relative to the other three sets of product absorptions. The Nb–H and Nb–D stretching regions (after annealing to 26 K) at high (5%) concentration of the precursor are compared with those at lower concentration (2%), as shown in Figure 5. The intensity ratio between the higher and lower frequency components of a pair is about 1:2. The **di** absorptions also increase in the process of photolysis and slightly

TABLE 4:	Observed and	Calculated	Fundamental	Frequencies	of CH ₃ ·	-NbH Isoto	pomers in	the	Ground	4A″	Electronic S	tate

	C	H ₃ -NbH		CE	CD ₃ -Nb-D		¹³ CH ₃ -NbH			CHD ₂ -NbH			CH ₂ D-NbD		D
approximate	fr	eq		fr	eq		fr	eq		fr	eq		:	freq	
description	obs	calc	int	obs	calc	int	obs	calc	int	obs	calc	int	obs	calc	int
A' CH ₃ str		3057.3	8		2262.0	3		3046.4	9		3028.1	11		3009.7	1
A' CH ₃ str		2975.9	3		2130.8	1		2973.2	3		2176.1	0		2212.4	4
A' Nb-H str	1611.4	1706.3	314	1159.1	1213.9	161	1611.4	1706.3	314	1611.0	1706.2	314	b	1213.9	161
A' CH ₃ scis		1410.8	2		1024.4	1		1407.6	2		1118.0	1		1379.9	2
A' CH ₃ deform		1151.1	3		908.2	14		1141.2	2		952.2	10		1072.0	4
A' CNbH bend		596.7	52		437.9	8		593.4	52		563.7	31		438.6	6
A' C-Nb str		497.8	54		458.0	57		485.4	53		480.4	76		513.8	66
A' CH ₃ rock		353.6	20		252.8	12		353.1	19		315.4	10		267.6	17
A" CH ₃ str		3055.0	6		2256.9	2		3044.4	6		2256.9	2		3054.6	6
A" CH ₃ scis		1410.6	4		1024.4	3		1407.3	4		1261.3	5		1207.0	3
A" CH ₂ twist		352.0	0		259.9	0		350.6	0		272.0	1		334.7	2
A" CH3 distort		151.2	33		108.7	18		151.0	33		141.6	38		116.9	14

^{*a*} B3LYP/6-311++G(3df,3pd)/SDD level. Frequencies and intensities are in cm^{-1} and km/mol. Infrared intensities are calculated values. ^{*b*} Overlapped by precursor absorption.

TABLE 5:	Observed and	Calculated Fi	undamental Freq	uencies of C	H≡NbH₃⁻ l	Isotopomers in the	Ground ¹ A	1 Electronic State ^a
								1

CH≡NbH ₃		I_3^{-}	CD=NbD ₃ ⁻			¹³ CH=NbH ₃ ⁻			CH	\equiv NbHD ₂	_	$CD \equiv NbDH_2^-$			
approximate	freq			freq			freq			freq			fr	eq	
description	obs	$calc^b$	int	obs	calc ^b	int	obs	calc ^b	int	obs	calc ^b	int	obs	calc ^b	int
A ₁ C–H str		3121.0	13		2314.4	8		3110.0	15		3121.0	13		2314.5	0
A1 NbH3 str	1542.5	1593.3	381	1103.7	1129.1	168	1542.2	1593.1	383	b	1120.2	255	1524.3	1575.8	500
$A_1 C \equiv Nb str$		955.0	188		910.6	161		926.7	181		950.8	183		914.9	173
A1 NbH3 deform		608.1	119		437.5	62		607.1	116		545.0	140		560.6	92
E NbH3 str	1489.5	1540.1	778×2	1076.1	1101.4	401×2	1489.5	1540.0	777×2	1506.7	1557.8	620	1488.2	1539.1	759
										b	1103.1	425	b	1111.4	351
E NbH3 scis		618.0	105×2		466.3	9×2		617.3	116×2		542.7	81		614.1	123
											438.7	70		559.1	45
E NbCH bend		581.6	111×2		433.5	104×2		576.7	99×2		588.9	29		473.4	- 99
											573.9	91		462.6	38
E NbH3 rock		455.1	8×2		326.4	7×2		454.8	8×2		368.7	5		387.1	16
											357.3	6		348.0	23

^{*a*} B3LYP/6-311++G(3df,3pd)/SDD level. Frequencies and intensities are in cm^{-1} and km/mol. Infrared intensities are calculated values. ^{*b*} Overlapped by precursor absorption.

TABLE 6:	Observed and	1 Calculated Strongest	Frequencies of ((CH ₃) ₂ NbH ₂ Is	sotopomers in the	e Ground ² .	A ₂ Electronic State ^a
----------	--------------	------------------------	------------------	---	-------------------	-------------------------	--

	(C	H ₃) ₂ NbH ₂		$(CD_3)_2NbD_2$			(130	CH ₃) ₂ NbH ₂		(C ₂ H ₃ D ₃)NbHD		
approximate freq			freq			freq			freq			
description	obs	calc	int	obs	calc	int	obs	calc	int	obs	calc	int
$\begin{array}{l} \nu_3 \ A_1 \ NbH_2 \ str \\ \nu_{16} \ B_1 \ NbH_2 \ str \\ \nu_6 \ A_1 \ NbH_2 \ scis \\ \nu_{26} \ B_2 \ NbH_2 \ wag \end{array}$	1717.5 1686.3	1777.2 1751.4 650.0 495.9	276 397 109 178	1231.5 1213.0	1261.2 1249.3 520.1 376.0	143 206 46 60	1717.5 1686.3	1777.2 1751.4 648.9 492.4	276 397 106 190	1707.9, 1694.5 b, 1217.8	1764.3 1255.5 581.7 484.2	334 177 96 124.2

^{*a*} B3LYP/6-311++G(3df,3pd)/SDD level. Frequencies and infrared intensities are in cm⁻¹ and km/mol. Infrared intensities are calculated values. ^{*b*} Overlapped by precursor absorption.

in the early stage of annealing as shown in Figures 2-5. The increases in intensity at higher concentration indicate that the **di** absorptions most likely arise from a higher-order methane reaction product.

Ta + CH₄. Parallel to the niobium system, four sets of product absorptions are observed, and the spectra from Ta + CH₄ reaction products are shown in Figure 6. Two product absorptions marked **m** with about 1:2 intensity ratio are observed at 1753.8 and 1731.9 cm⁻¹ in the Ta-H stretching region, which are compared with frequencies of 1758.9 and 1732.9 cm⁻¹ of TaH₂.³⁰ The binary tantalum hydride absorptions are not observed in this study, as the strongest TaH₂ band would be masked by the strongest **m** band. The new **m** bands show substantial increases in intensity upon visible, near UV, and full arc irradiation, respectively, and decrease gradually on annealing. Two more **m** absorptions are observed at 825.6 and 637.7 cm⁻¹.

On red side, a product absorption marked i is observed at 1726.2 cm⁻¹, which shows negligible intensity variation upon visible photolysis but increases about 70 and 60% (130% in total) upon near UV and full arc irradiation, respectively. It decreases completely upon annealing. On the lower frequency side of the Ta-H stretching region, a strong product absorption marked **a** is observed at 1567.8 cm^{-1} (the weaker, higher frequency component is probably overlapped by the water residue absorptions). The absorption increases slightly upon visible irradiation but decreases upon near UV and full arc irradiation. It increases slightly in the early stage of annealing and later gradually decreases. More importantly, the absorption is not observed in the presence of a trace (0.1%) of CBr₄. In the low-frequency region in Figure 6, two associated absorptions are observed at 917.6 and 574.6 cm⁻¹. On the blue side of the **m** absorptions in the hydrogen stretching frequency region, two product absorptions marked di are observed at 1787.8 and

Figure 4. IR spectra in the regions of 1750-1450, 1230-1050, and $850-600 \text{ cm}^{-1}$ for laser-ablated Nb atoms co-deposited with CH₂D₂ in excess argon at 8 K. (a) Nb + 2% CH₂D₂ in Ar co-deposited for 1 h. (b) After broad-band photolysis with a filter ($\lambda > 420 \text{ nm}$) for 20 min. (c) After broad-band photolysis with a filter ($\lambda > 220 \text{ nm}$) for 20 min. (c) After annealing to 26 K. (f) After annealing to 32 K. m, i, a, and di stand for the product absorption groups. "P" and "w" denote the precursor and water residue absorptions, respectively.

Figure 5. IR spectra in the regions of 1750-1450 and 1250-1150 cm⁻¹ for laser-ablated Nb atoms after annealing to 26 K following codeposition of Nb atoms with CH₄ isotopomers in excess argon at 8 K for 1 h: (a) 2% CH₄; (b) 5% CH₄; (c) 2% CD₄; (d) 5% CD₄; (e) 2% CH₂D₂; (f) 5% CH₂D₂. **m**, **i**, **a**, and **di** stand for the product absorption groups. "P" denotes the precursor absorption.

1761.4 cm^{-1} . They increase on visible, near UV, and full arc irradiation and decrease upon annealing.

Reactions with isotopic precursors (13 CH₄, CD₄, CH₂D₂) provide essential information, and the measured frequencies of the isotopomer product absorptions are listed in Table 7 and compared with the calculated values in Tables 8–11. The 13 C substitution has negligible effect on the bands in the hydrogen stretching frequency region, but small shifts are observed in the low-frequency region. All bands are shifted with CD₄ by larger factors in the Ta–D stretching than the lower frequency region. Figure 7 shows the observed at 1255.6 and 1243.6 cm⁻¹ in the Ta–D stretching region, which are compared with

1260.8 and 1244.1 cm⁻¹ of TaD₂.^{30b} The other product absorptions are indicated.

 CH_2D_2 provides further diagnostic information. Parallel to the case of Nb + CH_4 , two strong absorptions marked **m** appear at 1742.5 and 1249.8 cm⁻¹ in Figure 8, each at the middle of the metal—hydrogen stretching absorption pair. They suggest that the product responsible for **m** absorptions contains two identical metal—hydrogen bonds. On the high-frequency side in the hydrogen stretching region, absorptions marked **di** are observed at 1774.5 and 1269.0 cm⁻¹, each at the middle of the **di** hydrogen stretching absorption pair. The **di** absorptions become much stronger at higher concentration of the precursor. Shown in Figure 9 are the spectra with 2 and 5% methane

Figure 6. IR spectra in the regions of 1800-1550 and 930-500 cm⁻¹ for laser-ablated Ta atoms co-deposited with CH₄ in excess argon at 8 K. (a) After broad-band photolysis with a filter ($\lambda > 420$ nm) following co-deposition of Ta + [1% CH₄ + 0.1% CBr₄] in Ar for 1 h. (b) Ta + 1% CH₄ in Ar co-deposited for 1 h. (c) After broad-band photolysis with a filter ($\lambda > 420$ nm) for 20 min. (d) After broad-band photolysis with a filter ($\lambda > 420$ nm) for 20 min. (d) After broad-band photolysis with a filter ($\lambda > 420$ nm) for 20 min. (d) After broad-band photolysis with a filter ($\lambda > 420$ nm) for 20 min. (e) After broad-band photolysis with a filter ($\lambda > 220$ nm) for 20 min. (f) After annealing to 26 K. (g) After annealing to 32 K. m, i, a, and di indicate the product absorption groups, and w denotes water residue absorptions.

 TABLE 7: Frequencies of Product Absorptions Observed

 from Reactions of Methane with Ta in Excess Argon^a

group	CH_4	CD_4	¹³ CH ₄	CH_2D_2	description
i	1726.2	1236.8	1726.0	1724.6	Ta-H str
m	1753.8	1255.6	1753.8	1754.1, 1742.5, 1732.1	TaH ₂ sym str
	1731.9	1243.6	1731.9	1255.9, 1249.8	TaH ₂ antisym str
	825.6	740.0	803.4	780.0	C=Ta str
	637.7	522.5(?)			TaH ₂ scis (?)
	584.9				CH ₂ wag (?)
a		1160.9		1604.6, 1585.2, 1566.0,	A1 TaH3 str
	1567.8	1126.6	1567.7	1150.2, 1139.4, 1128.6	E TaH ₃ str
	917.6	862.8	889.0	916.1	C≡Ta str
	574.6		569.7		E TaCH bend
di	1787.8	1275.4	1787.8	1787, 1772, 1758	TaH ₂ sym str
	1761.4	1260.3	1761.4	1270, 1261	TaH ₂ antisym str

^{*a*} All frequencies are in cm⁻¹. Description gives major coordinate.

isotopomers after annealing to 26 K. Clearly the **di** absorptions become much stronger at higher precursor concentration relative to the other sets of product absorptions, indicating the **di** absorptions arise from a higher-order reaction product.

Discussion

The group 5 metal methane activation products will be considered for each metal in turn.

V + **CH4.** The relatively simple spectrum (Figure 1) suggests that only one reaction product is formed with vanadium. The single strong product absorption at 1534.4 cm⁻¹ in the V–H stretching region may be compared with the symmetric and antisymmetric stretching bands for VH₂ at 1532.4 and 1508.3 cm⁻¹, respectively.³¹ However, the binary vanadium hydrides were not observed in this study. The strong deuterium counterpart at 1106.5 cm⁻¹ (H/D isotopic ratio of 1.387) is near the symmetric and antisymmetric stretching frequencies for VD₂ at 1111.5 and 1079.5 cm⁻¹. On this basis, the single primary product of the V + CH₄ reaction is identified as the monohydrido C–H insertion product, CH₃–VH. The decrease on

annealing to allow further reaction shows that the primary reaction is not spontaneous and that this primary product is a reactive species. Furthermore, methane activation by the V⁺ ion was studied previously using ion beam techniques, and the V⁺ + CH₄ reaction most likely proceeds via oxidative addition to the C–H bond to yield CH₃–VH⁺.³²

The absorptions at 541.6 and 510.1 cm⁻¹ in Figure 1 most likely originate from the C–V–H bending and C–V stretching modes. The former shifts to 464.7 cm⁻¹ (H/D isotopic ratio 1.165). In the C_s structure with a bent C–V–H moiety for CH₃–VH, the two modes are heavily mixed. The observed frequencies are compared with the calculated values in Table 1. Clearly, the three absorptions are predicted to be the strongest in our observable region.

Our recent studies of metal atom reactions with methane or methyl halides show that Cr also forms only a mono-insertion product (CH₃-CrX), unlike the group 4 and group 6 transition metals, which form high-oxidation-state complexes along with the mono-insertion products. Computation results show that the Cr mono-insertion products are much more stable relative to the double and triple-bonded products.¹³ In contrast, the single and double-bonded products (CH₃-MX and CH₂=MHX) for the group 4, and these plus the triple-bonded products (CH= MH_2X) for group 6 transition metals have similar energies, and as a result, they are all formed in the reaction with CH₃X or subsequent photolysis.⁴⁻¹⁵

Vanadium is similar to its first-row neighbor Cr giving only the mono-insertion product (CH₃-VH), which is 34 kcal/mol more stable than CH₂=VH₂ in the doublet ground state. Unlike the singlet CH=VH₃⁻ anion, the doublet CH=VH₃ neutral species converges to the structure CH₂=VH₂ instead. Clearly, vanadium is a very effective transition metal for preparation of the mono-insertion product of methane, due to the high reactivity and selectivity. The insertion reaction is promoted by irradiation that most effectively overlaps the strong 370 nm absorption of vanadium atoms in solid argon,³³ and the methylidene is too

TAF	BLE	8:	Observed	l and	Calculate	d Fune	damental	Freq	juencies	of	$CH_2 =$	=TaH2	Isoto	pomers
-----	-----	----	----------	-------	-----------	--------	----------	------	----------	----	----------	-------	-------	--------

(a) Configuration 1 in the C_1 Symmetry Ground ²A Electronic State^{*a*}

	CH ₂ =TaH ₂			C	$CD_2 = TaD_2$			CH ₂ =TaH ₂		CHD=TaHD			
approximate	fre	eq		fre	eq		fr	eq		fr	eq		
description	obs	calc	int	obs	calc	int	obs	calc	int	obs	calc	int	
C-H str		3189.0	1		2360.4	3		3178.1	1		2338.4	5	
C-H str		2921.8	2		2126.7	3		2915.0	2		2934.6	2	
Ta-H str	1753.8	1799.0	193	1255.6	1275.1	105	1753.8	1799.0	193	1742.5	1794.1	264	
Ta-H str	1731.9	1773.8	419	1243.6	1259.9	206	1731.9	1773.8	419	1249.8	1262.4	179	
CH ₂ scis		1309.5	16		1032.0	23		1300.1	15		1180.4	11	
C=Ta str	825.6	818.4	62	740.0	692.5	34	803.4	807.3	58	780.0	761.5	51	
TaH ₂ scis		734.1	2		543.3	18		724.0	3		682.7	3	
CH ₂ wag	637.7	689.5	97	522.5	538.3	51		683.6	94		577.7	77	
TaH ₂ rock		597.5	5		455.5	3		593.3	5		480.3	5	
CH ₂ twist		408.9	2		290.4	1		408.7	2		359.6	2	
CH ₂ rock		197.5	10		142.4	5		197.1	10		165.9	5	
TaH ₂ wag		123.5	81		88.5	42		123.5	81		106.6	61	

(b) Configuration 2 in the C_s Symmetry Ground ²A' Electronic State^b

	CH ₂ =TaH ₂			CD ₂ =TaD ₂			13	$CH_2 = TaH_2$		CHD=TaHD		
approximate	freq			freq			freq			fr	eq	
description	obs	calc	int	obs	calc	int	obs	calc	int	obs	calc	int
A' C-H str		3182.6	11		2358.0	13		3171.6	11		2333.6	13
A' C-H str		2509.9	9		1826.8	3		2504.2	9		2530.4	8
A' Ta-H str	1753.8	1789.3	155	1255.6	1268.0	78	1753.8	1789.3	156	1742.5	1782.7	211
A' CH ₂ scis		1317.8	27		1021.4	19		1310.4	27		1221.1	17
A' C≡Ta str	825.6	847.2	58	740.0	742.8	38	803.4	820.0	56	780.0	792.2	47
A' TaH ₂ scis	637.7	678.3	26		483.1	14		678.0	26		588.4	20
A' TaH ₂ wag		560.2	37		414.4	15		558.5	37		529.5	23
A' CH ₂ rock		496.6	5		366.0	7		494.1	4		417.4	10
A" Ta-H str	1731.9	1776.4	272	1243.6	1262.4	140	1731.9	1776.4	272	1249.8	1265.6	112
A" CH ₂ wag	584.9	576.4	78		450.6	37		572.0	79		473.2	41
A" TaH2 twist		485.5	28		350.4	22		484.1	26		368.9	27
A" CH2 twist		206.1	2		146.5	1		206.1	2		186.5	1

^{*a*} B3LYP/6-311++G(3df,3pd)/SDD level. Frequencies and intensities are in cm⁻¹ and km/mol. Infrared intensities are calculated values. ^{*b*} BPW91/6-311++G(3df,3pd)/SDD level. Frequencies and intensities are in cm⁻¹ and km/mol. Infrared intensities are calculated values.

TABLE 7. Observed and Calculated Fundamental Frequencies of CH3 Tail isotopomers in the Orband A Electronic State

	С	H ₃ -TaH		CE	D ₃ -Ta-D		¹³ C	CH₃−TaH		CH	ID ₂ -TaH		C	CH ₂ D-Ta	D
approximate	fre	eq		fre	eq		fr	eq		fr	eq		:	freq	
description	obs	calc	int	obs	calc	int	obs	calc	int	obs	calc	int	obs	calc	int
A' CH ₃ str		3047.1	9		2254.1	4		3036.9	9		2017.4	11		3005.0	2
A' CH3 str		2970.5	4		2128.1	0		2967.7	4		2173.5	0		2204.8	4
A' Ta-H str	1726.2	1749.4	269	1236.8	1241.2	136	1726.0	1749.4	269	1724.6	1749.3	269	b	1241.1	137
A' CH ₃ scis		1408.3	3		1022.0	2		1405.2	3		1121.3	3		1378.0	3
A' CH ₃ deform		1169.7	8		923.8	18		1159.6	7		963.1	12		1089.4	9
A' CTaH bend		597.1	24		462.3	30		593.3	23		557.3	10		522.9	38
A' C-Ta str		485.5	35		431.2	6		485.5	35		480.9	47		431.9	5
A' CH3 rock		337.6	12		240.8	7		337.2	11		303.4	7		254.1	9
A" CH3 str		3051.4	4		2254.3	1		3040.9	4		2254.4	1		3051.1	3
A" CH ₃ scis		1410.8	6		1023.8	4		1407.6	6		1260.2	7		1208.2	4
A" CH2 twist		388.6	2		288.4	1		386.9	2		295.3	0		375.7	3
A" CH3 distort		171.3	17		122.3	9		171.2	17		153.6	22		136.6	7

^{*a*} B3LYP/6-311++G(3df,3pd)/SDD level. Frequencies and intensities are in cm^{-1} and km/mol. Infrared intensities are calculated values. ^{*b*} Overlapped by a precursor absorption.

high in energy to form here.

$$V^* + CH_4 \rightarrow CH_3 - VH \tag{1}$$

The structure of CH₃–VH in the quartet ground state is shown in Figure 10. The molecule has C_s symmetry, where the carbon, vanadium, and two hydrogen atoms lie in the molecular plane. The C–V bond length of 2.074 Å is compared with that of 2.072 Å of V{ η^2 -C(Mes)=NBu¹}₃ (Mes = 2,4,6-Me₃C₆H₂).³⁴ The C–V and V–H bonds are highly polarized with Mulliken atomic charges for C, V, H₁, H₂, and H₄ of -0.34, 0.62, 0.01, -0.01, and -0.27, respectively, and the dipole moment is 2.65 D. The unobserved higher-energy $CH_2 = VH_2$ structure is also given for comparison.

 $Nb + CH_4$. The spectra observed for Nb and Ta reveal a one to one correspondence among the observed four absorption band groups. Each set of absorptions is due to a different product based on their variations upon photolysis, annealing, and addition of a trace of CCl₄ or CBr₄. The consistent agreement between the Nb and Ta spectra helps to substantiate the assignments.

The two absorptions marked **m** at 1680.7 and 1652.5 cm⁻¹ in the Nb–H stretching region (Figure 2) show a constant 1:2

TABLE 10: Observed and Calculated Fundamental Frequencies of $CH \equiv TaH_3^-$ Isotopomers in the Ground ${}^{1}A_1$ Electronic State^{*a*}

	(CH≡TaH	[₃ -	(CD≡TaD	93 ⁻	13	CH≡Tal	H_{3}^{-}	CH	≡TaHD ₂	_	CD	≡TaDH ₂	-
approximate	fr	eq		fr	eq		fr	eq		fr	eq		fr	eq	
description	obs	calc ^b	int	obs	calc ^b	int	obs	calc ^b	int	obs	calc ^b	int	obs	calc ^b	int
A ₁ C–H str		3141.7	12		2330.0	0		3130.6	13		3141.7	12		2330.1	0
A1TaH3 str	b	1646.2	401	1160.9	1166.1	182	b	1646.1	403	1585.2	1607.9	566	1604.6	1627.7	485
A₁ C≡Ta str	917.6	945.8	182	862.8	899.4	152	889.0	915.6	175	916.1	941.5	173		903.7	166
A ₁ TaH ₃ deform		624.5	94		447.0	51		623.6	91		570.0	79		567.2	80
E TaH ₃ str	1567.8	1588.7	683×2	1126.6	1130.3	351×2	1567.7	1588.6	682×2	1150.2	1153.9	247	1566.0	1587.7	667
										1128.6	1132.0	373	1139.4	1143.1	320
E TaH ₃ scis		632.1	157×2		448.3	129×2		632.1	157×2		579.6	183		627.3	106
											573.6	116		559.3	62
E TaCH bend	574.6	571.8	72×2		447.1	1×2	569.7	567.2	69×2		544.3	10		460.6	94
											447.3	45		447.9	60
E TaH ₃ rock		450.4	0×2		325.2	1×2		449.6	0×2		359.7	6		394.9	7
											349.8	0		353.9	10

^{*a*} B3LYP/6-311++G(3df,3pd)/SDD level. Frequencies and intensities are in cm^{-1} and km/mol. Infrared intensities are calculated values. ^{*b*} Probably overlapped by the water absorption at 1623.6 cm⁻¹.

TABLE 11: Observed and Calculated Frequencies of Strong Fundamentals of $(CH_3)_2TaH_2$ Isotopomers in the Ground 2A_2 Electronic State^a

	(CH ₃) ₂ TaH ₂			$(CD_3)_2TaD_2$			(13	CH ₃) ₂ TaH ₂		C ₂ H ₃ D ₃ TaHD		
approximate	freq			freq.			fre	freq.		freq.		
description	obs	calc	int	obs	calc	int	obs	calc	int	obs	calc	int
	2890.2 1787.8 1761.4	3035.3 1817.7 1791.1 681.6 508.0	24 256 341 80 158	1275.4 1260.3	2235.4 1288.0 1272.8 514.6 382.4	10 130 174 46 42	1787.8 1761.4	3026.5 1817.7 1791.1 680.8 501.2	24 256 340 78 164	1771.6 1270.4	3047.2 1804.3 1280.8 605.5 473.1	13 295 158 58 80

^a B3LYP/6-311++G(3df,3pd)/SDD level. Frequencies and intensities are in cm⁻¹ and km/mol. Infrared intensities are calculated values.

Figure 7. IR spectra in the regions of 1285-1100 and 880-500 cm⁻¹ for laser-ablated Ta atoms co-deposited with CD₄ in excess argon at 8 K. (a) Ta + 2% CD₄ in Ar co-deposited for 1 h. (b) After broad-band photolysis with a filter ($\lambda > 420$ nm) for 20 min. (c) After broad-band photolysis with a filter ($\lambda < 380$ nm) for 20 min. (d) After broad-band photolysis with a filter ($\lambda > 220$ nm) for 20 min. (e) After annealing to 26 K. (f) After annealing to 32 K. **m**, **i**, **a**, and **di** stand for the product absorption groups.

intensity ratio. The ¹³C substitution leads to negligible frequency shift, whereas deuteration results in frequency shifts of -474.7 and -463.0 cm^{-1} (H/D isotopic ratios of 1.394 and 1.389), suggesting that they arise from the symmetric and antisymmetric stretching modes of the Nb methylidene (dihydrido) complex (CH₂=NbH₂). These modes are slightly higher than those for NbH₂ (1610.4 and 1569.1 cm⁻¹).³⁰ The absorption observed at 805.4 cm⁻¹ shows ¹³C and D frequency shifts of -20.9 and

 -68.6 cm^{-1} ($^{12}\text{C}/^{13}\text{C}$ and H/D isotopic ratios of 1.027 and 1.093). Due to the frequency and relatively large ^{13}C shift, the band is due to the mostly C=Nb stretching mode. The absorptions at 547.1 and 480.1 cm⁻¹ in the further lower frequency region exhibit very small (-0.5 cm^{-1}) and negligible ^{13}C frequency shifts (D counterparts are not observed due to the low frequencies), respectively, and are assigned to the CH₂ wagging and NbH₂ twisting modes. The observed fre-

Figure 8. IR spectra in the regions of 1800-1550, 1285-1100, and $900-600 \text{ cm}^{-1}$ for laser-ablated Ta atoms co-deposited with CH₂D₂ in excess argon at 8 K. (a) Ta + 2% CH₂D₂ in Ar co-deposited for 1 h. (b) After broad-band photolysis with a filter ($\lambda > 420 \text{ nm}$) for 20 min. (c) After broad-band photolysis with a filter ($\lambda > 220 \text{ nm}$) for 20 min. (c) After annealing to 26 K. (f) After annealing to 32 K. m, i, a, and di stand for the product absorption groups. "P" and "w" denote the precursor and water residue absorptions, respectively.

Figure 9. IR spectra in the regions of 1800-1550 and 1285-1100 cm⁻¹ for laser-ablated Ta atoms after annealing to 26 K following co-deposition of Ta atoms with CH₄ isotopomers in excess argon at 8 K for 1 h: (a) 1% CH₄; (b) 5% CH₄; (c) 2% CD₄; (d) 5% CD₄; (e) 2% CH₂D₂; (f) 5% CH₂D₂. **m**, **i**, **a**, and **di** stand for the product absorption groups. "P" and "w" denotes the precursor absorption.

quencies are compared with the calculated frequencies in Table 3, where the BPW91 vibrational frequencies are generally in better agreements with the observed values than the B3LYP values.

Methylidene complexes of group 4 and 6 transition metals (CH₂=MHX) have been prepared by α -hydrogen migration in the mono-insertion complexes (CH₃-MX) during co-deposition of the metal atom and CH₃X or photolysis afterward, and several of these processes are photoreversible.⁴⁻¹⁵ However, the Nb + CH₄ system is apparently not photoreversible, but the increases in absorption intensity of the **m** absorptions on photolysis are remarkable, particularly upon visible and full-arc irradiation.

Apparently, our "420 nm" long-wavelength pass filter reaches the red tail of the 400 nm Nb atom absorption in solid argon and initiates reaction, which continues with strong absorption at 344 nm in the near-ultraviolet.³⁵

$$Nb^* + CH_4 \rightarrow CH_3 - NbH \rightarrow CH_2 = NbH_2$$
 (2)

The CH₂D₂ spectra in Figure 4 provide diagnostic information about the structure of CH₂=NbH₂: Two strong absorptions appear at 1666.4 and 1198.4 cm⁻¹ at the middle of the metal– hydrogen stretching absorption pairs of CD₂=NbH₂ and CH₂= NbD₂, respectively, which occur almost unshifted from pure

Figure 10. Optimized structures of $CH_3-VH(Q)$ and $CH_2=VH_2(D)$ configurations at the level of B3LYP/6-311++G(3df,3pd). All electron basis is used for V. Q and D denote quartet and doublet electronic states. The bond lengths and angles are in Å and degrees.

(all H or all D) isotopic values. This result strongly suggests that the two metal—hydrogen bonds are identical. Deuteration of one of the hydrogen atoms breaks the coupling between the two hydrogen stretching motions of the NbH₂ group, and if the metal—hydrogen bonds are identical, the hydrogen stretching absorption (free from the coupling) should appear at the median of the symmetric and antisymmetric hydrogen stretching pair.

It must be remembered that the methylidene dihydride complexes formed in previous studies from methane and groups 4 and 6 transition metals show spectroscopic evidence for two different metal—hydrogen bonds, due to the agostic interaction.^{8–13} The agostic structure with distorted CH₂ subgroup and two different metal—hydrogen bonds are reproduced by electronic structure computations, and the predicted vibrational characteristics are in good agreement with the observed values.

Calculations at the B3LYP, BPW91, and MP2 levels with medium or large basis all give a stable C_1 structure doublet ground state (configuration 1 in Figure 11), where the CH₂ group is considerably distorted (the agostic angle is 99.7°, and $r(Nb\cdots H)$ is 2.350 Å with B3LYP/6-311++G(3df,3pd)), showing the agostic interaction. Due to the distorted CH₂ subgroup, the two metal-hydrogen bonds are inevitably different from each other. This C_1 structure for CH₂=NbH₂ is consistent with those of the methylidene hydride complexes of groups 4 and 6 transition metals, and the agostic angle of 99.7° is compared to those of 92.9 and 113.0° for CH₂=ZrH₂ and CH₂=MoH₂, respectively.

However, further investigation for the structure of CH₂=NbH₂ leads to another stable configuration (configuration 2) with C_s symmetry, as shown in Figure 11, which is only 0.9, 0.2, and 2.9 kcal/mol higher in energy at the levels of B3LYP, BPW91, and MP2/6-311++G(3df,3pd), respectively, and probably within the accuracy of the calculations even if basis set superposition error were taken into account. Furthermore, matrix interaction could also reverse such a small energy difference. Hence, configurations 1 and 2 for CH₂=NbH₂ are essentially isoergic under our experimental and theoretical conditions. The predicted frequencies for configurations 1 and 2 are compared with observed values in Table 3a,b. Note that the two metalhydrogen bonds are identical in configuration 2, and interestingly enough, the agostic interaction appears to be even stronger (the agostic angle is 83.1°, and $r(Nb\cdots H)$ is 2.061 Å). The agostic distortion is a structural rearrangement to stabilize the carbon-

Figure 11. Optimized structures of $CH_3-NbH(Q)$, $CH_2=NbH_2(D)$, $CH\equiv NbH_3^{-}(S)$, and $(CH_3)_2NbH_2(D)$ at the level of B3LYP/6-311++G(3df,3pd)/SDD. The bond lengths and angles are in Å and degrees. Q, D, and S indicate quartet, doublet and singlet state multiplicity.

metal bond and closely related to the C=M bond length, and the shorter carbon-metal bond is normally accompanied by the stronger agostic interaction.^{9–13} The carbon-metal bond lengths of 1.896 and 1.858 Å in configurations 1 and 2 are compared to 1.94–2.00 Å values for large alkylidene complexes.¹

The new C_s structure predicted for the Nb methylidene hydride is quite unique. The previously studied methylidene hydride complexes of groups 4 and 6 transition metals converge to C_1 structures with two slightly different metal-hydrogen bonds. Calculations show that the V and Ta methylidene hydride complexes also have the stable C_s configurations almost equal in energy with the C_1 structure. The C_s structure is apparently more favorable for the methylidene hydride complexes in the doublet ground state. The spectrum of the methylidene hydride complex using CH2D2 suggests two identical Nb-H bonds and requires configuration 2, although its energy is slightly higher than the global energy minimum (configuration 1). In an effort to further examine the molecular structure of CH₂=NbH₂, calculations with CCSD/6-311++G(2d,p)/SDD were performed, and the results also show that configuration 1 is the global minimum, whereas configuration 2 is 3.2 kcal/mol higher in energy.

It should also be noted here that the T1 diagnostic values in the CCSD calculations for doublet CH_2 =NbH₂ are in the range 0.05-0.07, which are higher than the 0.02 value where a multiconfiguration calculation may be required.³⁶ This indicates that multiconfiguration calculations are necessary to search for the structure of CH_2 =NbH₂, and that there is the possibility that neither configuration 1 nor configuration 2 in Figure 11 may represent the exact molecular structure of the methylidene hydride complex. The niobium methylidene hydride complex poses a challenge to electronic structure theory, which is beyond the scope of this work. The single absorption marked **i** at 1611.4 cm⁻¹ is observed on the red side of the **m** absorptions in Figure 2. The absorption does not show dramatic increase in intensity in the process of photolysis, unlike the **m** absorptions. The ¹³C substitution leads to a negligible shift, but deuteration gives a large shift of -452.3cm⁻¹ (H/D isotopic ratio of 1.390), suggesting that the band originates from the Nb–H stretching mode of a monohydrido insertion product. The low-frequency absorptions are not observed in this study due to low intensities. In the previous studies on methane activation by group 4 and 6 transition metals,⁸⁻¹³ the metal—hydrogen stretching band of CH₃—MH appears on the red side of the hydrogen stretching absorption pair of the methylene dihydride complex.

In the reaction of transition-metal atoms and methane, the monohydrido insertion product is formed first.^{9,12,37–39} The appearance of CH₃–VH in the reaction of V with CH₄ described above is another example. High-oxidation-state transition-metal complexes (CH₂=MH₂ and CH=MH₃) are formed most likely from the monohydrido complex via α -hydrogen migration.^{8–13} The reaction to give CH₃–MH requires activation energy, laser ablation provides excited transition-metal atoms, and the excited intermediate thus formed can be relaxed by the matrix or undergo α -hydrogen transfer. The absorptions marked i in Figures 2–6 are assigned to CH₃–NbH in the quartet ground state.

The predicted frequencies for CH₃–NbH are listed in Table 4. The observed hydrogen stretching band is in fact the strongest one among the IR absorptions; the second strongest band is expected a sixth as strong as the Nb–H stretching band. The predicted structure of CH₃–NbH is shown in Figure 11, which the carbon, niobium, and two hydrogen atoms are in the molecular plane, similar to the structure of CH₃–VH in Figure 10. The C–Nb bond length of 2.153 Å is substantially longer than that of CH₂=NbH₂ and compared to that of 2.228 Å measured for Tp^{Me₂}NbCl(*i*-Pr)(PhC=CMe) [Tp^{Me₂} = hydrotris-(3,5-dimethylpyrazolyl)borate].⁴⁰ The geometrical and other physical parameters of CH₃–NbH are listed in Table 12.

The absorptions marked **a** at 1542.5 and 1489.5 cm^{-1} are observed on the red side of the Nb-H stretching region, as shown in Figure 2. The ¹³C substitution gives negligible shifts, but deuteration leads to frequency shifts of -438.8 and -413.4 cm^{-1} (H/D isotopic ratios of 1.398 and 1.384), respectively, indicating that they are Nb-H stretching absorptions. However, the frequencies are exceptionally low in comparison with other Nb-H stretching frequencies of neutral niobium hydrides (e.g., 1708.0, 1705.2, 1688.4, and 1683.9 cm⁻¹ for NbH₄, 1610.4 and 1569.1 cm⁻¹ for NbH₂, and 1555.9 cm⁻¹ for NbH) and the latter two bands are detected here.30 Moreover, the absorptions completely disappear on addition of a trace of CCl₄ (Figure 2a). Earlier studies show that the concentration of an anionic product dramatically decreases upon addition of CCl₄ by removing electrons produced in the laser-ablation process.²⁶ Depletion of the absorptions by addition of CCl₄, along with the exceptionally low hydrogen stretching frequencies, indicates that the absorptions at 1542.5 and 1489.5 cm⁻¹ originate from an anionic product with at least two hydrogen atoms bonded to the Nb atom.

The energies of the plausible products relative to that of the niobium atom (${}^{6}D_{1/2}$) and CH₄ are shown in Figure 12. It is notable that, CH₃—NbH and CH₂=NbH₂ in the quartet and doublet ground states, respectively, are energetically close to each other and the most stable among the primary neutral products. On the other hand, among the anionic products, CH=NbH₃⁻ in the singlet ground state is clearly the most stable species. In recent matrix studies on reaction of group 6 transition

TABLE 12: Geometrical Parameters and Physical Constants of CH_3 -NbH, CH_2 =NbH₂, CH=NbH₃⁻, and $(CH_3)_2$ NbH₂^a

		CH ₂ =	NbH ₂		
parameters	CH ₃ -NbH	config. 1	config. 1	$CH \equiv NbH_3^-$	(CH ₃) ₂ NbH ₂
r(C–Nb)	2.153	1.896	1.858	1.797	2.137
$r(C-H_1)$	1.095	1.106	1.143	1.090	1.102
$r(C-H_2)$	1.096	1.084	1.080		1.093
$r(Nb-H_3)$		1.793	1.780	1.851	
$r(Nb-H_4)$	1.787	1.797	1.780	1.851	1.783
$r(Nb \cdots H_1)$	2.774	2.350	2.060	2.887	2.569
$\angle H_1CH_2$	109.2	115.1	113.9		108.3
∠H ₂ CH ₃	107.8				109.6
∠CNbH ₃		109.8	98.3	102.9	
$\angle \text{CNbH}_4$	117.7	118.9	98.3	102.9	111.0
∠H₃NbH₄		120.9	115.2	115.2	
∠H ₁ CNb	113.2	99.7	83.1	180.0	100.0
∠H ₂ CNb	108.6	145.0	163.0		115.0
$\Phi(H_1CNbH_3)$	121.5	174.0	121.4		115.7
$\Phi(H_1CNbH_4)$	180.0	167.5	-121.4		62.7
mol symm	C_s	C_1	C_s	C_{3v}	C_{2v}
$q(\mathbf{C})^b$	-0.92	-0.79	-0.66	-0.97	-0.85
$q(\mathbf{H}_1)^b$	0.04	0.02	-0.01	0.01	0.10
$q(\mathrm{H}_2)^b$	0.08	0.00	0.02	-0.58	0.05
$q(\mathrm{H}_3)^b$	0.08	-0.41	-0.37	-0.58	0.05
$q(\mathrm{H}_4)^b$	-0.41	-0.44	-0.37	-0.58	-0.42
$q(Nb)^b$	1.14	1.63	1.40	1.68	2.15
u^c	1.82	1.25	2.80	1.73	0.93
state ^d	⁴ A''	^{2}A	$^{2}A'$	${}^{1}A_{1}$	${}^{2}A_{2}$
ΔE^e	17.6	19.7	18.8	60.6 (40.7 ^f)	47.9

^{*a*} Bond lengths and angles are in Å and degree. Calculated at the level B3LYP/6-311++G(3df,3pd)/SDD. ^{*b*} Mulliken atomic charge. ^{*c*} Molecular dipole moment in D. ^{*d*} Electronic state. ^{*e*} Binding energies in kcal/mol relative to CH₃F and Nb (⁶D). ^{*f*} Binding energy in kcal/mol relative to CH₃F and ⁵Nb⁻ (⁵D).

metals (Mo and W) with CH_4 ,^{12,13} the simplest possible methylidyne trihydride complex, $CH \equiv MH_3$, is formed along with $CH_3 - MH$ and $CH_2 = MH_2$. The three C-H insertion products are interconvertible via α -hydrogen migration upon visible and near UV irradiation. With addition of an electron to the Nb atom, it becomes isoelectronic with the Mo atom, having six electrons in the valence shell (5s¹4d⁵), and electron capture by $CH_2 = NbH_2$ thus results in rearrangement to the more stable methylidyne anion.

$$CH_2 = NbH_2 + e^- \rightarrow [CH_2 = NbH_2]^- \rightarrow CH \equiv NbH_3^-$$
 (3)

The energies displayed in Figure 12 also suggest that loss of an electron from $CH \equiv NbH_3^-$ would lead to formation of CH_3^- NbH or $CH_2 = NbH_2$. The $CH \equiv NbH_3$ neutral doublet ground state is higher than the reactants (Nb(⁶D) + CH₄)), and therefore, the neutral niobium methylidyne hydride complex most likely transforms to the more stable mono- or dihydrido insertion product. It is in fact shown in Figures 2–5 that decreases of the **a** absorptions upon full-arc irradiation are accompanied by increases in the absorptions of the methylidene dihydride complex.

The CH=NbH₃⁻ anion is calculated to have the $C_{3\nu}$ structure shown in Figure 11. Despite the negative charge, the C–Nb bond length of 1.797 Å is much shorter than those of CH₃--NbH and CH₂=NbH₂ but longer than the C–Mo bond length of 1.714 Å for neutral CH=MoH₃. The predicted frequencies for the isotopomers are compared with the observed values, as in Table 5, which are in good agreement. The observed/ calculated ratios for the hydrogen stretching absorptions of CH=NbH₃⁻, ¹³CH=NbH₃⁻, and CD=NbD₃⁻ are 0.968, 0.967, 0.968, 0.967, 0.978, and 0.977, respectively. The vibrational characteristics of other plausible products are also examined,

Figure 12. Energies of neutral and anionic products relative to Nb(^{6}D) + CH₄. Note that CH₃-NbH(Q) and CH₂=NbH₂(D) are the most stable ones among the plausible neutral primary products. Formation of the high-order product, (CH₃)₂NbH₂(D), brings further stabilization. Also note that CH=NbH₃⁻(S) is the most stable among the plausible anionic products. S, D, and Q denote singlet, doublet, and quartet states.

but they do not match as well as those of $CH \equiv NbH_3^-$. Unfortunately, the low-frequency **a** absorptions are not observed, probably due to the low intensity. However, the **a** absorptions in the Ta spectra showing parallel characteristics are stronger, and the low-frequency components match well with the predicted values. On the basis of the experimental and computational results, the **a** absorptions are assigned to the anionic methylidyne complex, $CH \equiv NbH_3^-$. This observation is significant because the known carbynes are mostly group 6 transition-metal complexes, and attempts to synthesize anionic group 5 carbyne anion complexes have not been successful.¹ The methylidyne hydride complex, $CH \equiv NbH_3^-$, is the first group 5 transition-metal trihydride carbyne anion complex, and it may be compared with the $CH \equiv NbH_2F^-$ product from CH_3F reactions with laser-ablated Nb.¹⁸

The absorptions marked **di** at 1717.5 and 1686.3 cm⁻¹ are not clearly discernible in the original spectrum after deposition but become stronger in the process of photolysis and early stage of annealing. Although ¹³C substitution gives negligible shifts, deuteration causes large 486.0 and 473.3 cm⁻¹ red shifts (H/D isotopic ratios of 1.395 and 1.390). More importantly, their relative intensities to those of the other sets of absorptions increase markedly at high concentration of the precursor, and their metal—hydrogen stretching frequencies are higher than those of CH₃—NbH and CH₂=NbH₂, probably due to the higher oxidation state of the metal atom. The observed spectroscopic characteristics suggest that the **di** absorptions arise form a higher-order product. Earlier studies show that group 4 transition metals form dimethyl complexes ((CH₃)₂MX₂) in reaction with methane as well as methyl halides,^{4,6–11} whereas group 6 transition metals evidently do not form the high-order complex.^{12–15} The present results suggest that Nb, a group 5 transition metal, also forms a dimethyl dihydride complex ((CH₃)₂NbH₂) in reaction with methane and more in the following process of photolysis and annealing. But the bands are much weaker relative to those in the spectra of group 4 transition metals, indicating that the **di** complex is formed much less with the group 5 transition metal.

The observed metal—hydrogen stretching frequencies of the **di** absorptions are compared with those predicted frequencies for (CH₃)NbH₂ in Table 6. Evidently, the observed hydrogen stretching bands are the first and second strongest ones, and the other absorptions are much weaker. (CH₃)NbH₂ is computed to have a C_{2v} structure as shown in Figure 11 and is in fact the most stable neutral product examined in this study (Figure 12), leading to increase of the product in the process of photolysis and annealing and particularly at high concentration of the precursor. The observation of two intermediate mixed isotopic bands with CH₂D₂ suggests that the two metal—hydrogen bonds may, however, be inequivalent in this doublet ground-state molecule.

The binding energy of $(CH_3)_2NbH_2$ is 30 and 28 kcal/mol larger than those of CH_3 -NbH and CH_2 =NbH₂, respectively, as shown in Table 12. It is not clear at this point whether $(CH_3)_2NbH_2$ is formed in reaction of CH_3 -NbH or CH_2 =NbH₂ with methane located nearby in the matrix. Alkylidene complexes are well-known C-H activation agents of alkane, and therefore, C-H activation of CH₄ by CH₂=NbH₂ should lead to $(CH_3)_2NbH_2$. Activation reaction of an alkane by an alkylidene complex is similar to an addition reaction to a double bond.

CH₂=NbH₂ + H−CH₃ → (CH₃)₂NbH₂
$$\Delta E = -28 \text{ kcal/mol} (4)$$

On the other hand, the CH_3 -NbH in the quartet state is also expected reactive enough with CH_4 for C-H insertion and to proceed to $(CH_3)_2$ NbH₂.

CH₃−NbH(Q) + CH₄ → (CH₃)₂NbH₂
$$\Delta E = -30 \text{ kcal/mol} (5)$$

Ta + **CH4.** Parallel to the case of Nb described above, four sets of product absorptions are observed in the spectra from reaction of Ta with CH₄, as shown in Figures 6–9, whereas the frequencies are in general a little higher due to the effect of relativity in the third-row transition metal series.⁴¹ The strong **m** absorption pair at 1753.8 and 1731.9 cm⁻¹ increases on irradiation. The large increase in UV region arises from the strong electronic absorption of Ta at 260–270 nm.⁴² The absorption pair shows essentially no shifts on ¹³C substitution but gives shifts of -498.2 and -488.3 cm⁻¹ on deuteration (H/D isotopic ratios of 1.397 and 1.393), respectively, indicating that they are Ta–H stretching bands. The above m bands are very near 1759 and 1733 cm⁻¹ absorptions observed for TaH₂ in the Ta + H₂ reaction.^{30b}

The band at 825.6 cm⁻¹ shifts 22.2 and 85.6 cm⁻¹ on ¹³C and D substitutions (${}^{12}C/{}^{13}C$ and H/D isotopic ratios of 1.028 and 1.116), respectively. The large ${}^{13}C$ shift indicates that the band arises from a vibrational mode involving considerable displacement of the carbon atom, and the relatively high frequency suggests a double bond between carbon and tantalum atoms. It is, therefore, assigned to the C=Ta stretching mode. The weak absorptions at 637.7 and 584.9 cm⁻¹ are due to the

Figure 13. Optimized structures of CH_3 -TaH(Q), CH_2 =TaH₂(D), CH=TaH₃⁻(S), and $(CH_3)_2$ TaH₂(D) at the level of B3LYP/6-311++G(3df,3pd)/SDD. The bond lengths and angles are in Å and degrees. Q, D, and S indicate quartet, doublet and singlet state multiplicity.

mostly TaH₂ scissoring and CH₂ wagging modes of the reaction product. The **m** absorptions are assigned to the Ta methylidene hydride complex, CH₂=TaH₂, consistent with the case of CH₂=NbH₂.

The strong sharp Ta-H and Ta-D stretching absorptions at 1742.6 and 1249.8 cm⁻¹ are observed in the CH₂D₂ spectra (Figure 8) and are near the median of the metal-hydrogen stretching absorption pairs of CD₂=TaH₂ and CH₂=TaD₂, respectively. In line with the Nb case, this indicates that the two metal-hydrogen bonds are identical, and calculations show that the C_1 structure with the distorted CH₂ group (configuration 1) in Figure 13 is the most stable. However, there is another stable structure with C_s symmetry (configuration 2) 2.0 kcal/mol higher in energy, which contains two identical metal-hydrogen bonds. The geometrical and other physical parameters of CH₃-TaH are listed in Table 13.

CCSD calculations were also carried out to examine the structure of the methylidene hydride complex, and similar to the case of CH₂=NbH₂, configuration 1 is 4.2 kcal/mol lower in energy than configuration 2. The T1 diagnostic values in CCSD calculations for CH₂=TaH₂ are near 0.060, which reaffirm that multiconfiguration calculations are necessary for investigation of the structures of the methylidene hydride complexes of group 5 transition metals. Although it is not calculated to be the most stable, the C_s structure has frequencies in better agreement with CH₂D₂ spectra suggesting that the two metal-hydrogen bonds are identical.

Like in the case of CH_2 =NbH₂, the agostic distortion is even larger in configuration 2 (99.5° vs 85.0°), as shown in Figure 13, indicating along with previous results that the agostic distortion is a general phenomenon to stabilize the carbonmetal bond in high-oxidation-state complexes.^{43,44} The Ta-H

TABLE 13: Geometrical Parameters and Physical Constants of CH_3 -TaH, CH_2 =TaH₂, CH=TaH₃⁻, and $(CH_3)_2$ TaH₂^a

		CH ₂ =	TaH2		
parameters	CH3-TaH	config. 1	config. 2	CH≡TaH3 ⁻	(CH ₃) ₂ TaH ₂
r(C-Ta)	2.150	1.913	1.877	1.822	2.146
$r(C-H_1)$	1.096	1.109	1.140	1.088	1.104
$r(C-H_2)$	1.096	1.083	1.079		1.096
r(Ta-H ₃)		1.801	1.790	1.855	
r(Ta-H ₄)	1.798	1.809	1.790	1.855	1.793
<i>r</i> (Ta•••H ₁)	2.766	2.365	2.109	2.910	2.607
$\angle H_1CH_2$	108.9	114.2	113.7		107.7
∠H ₂ CH ₃	107.7				108.9
∠CtaH ₃		111.1	102.2	104.3	
∠CtaH₄	120.4	121.6	102.2	104.3	110.6
∠H₃TaH₄		124.3	115.9	114.1	
∠H₁CTa	112.8	99.5	85.0	180.0	101.8
∠H₂CTa	109.2	146.1	161.2		115.0
$\Phi(H_1CTaH_3)$	121.2	10.9	119.9		116.2
$\Phi(H_1CTaH_4)$	180.0	171.8	-119.9		-116.2
mol symm	C_s	C_1	$C_{\rm s}$	C_{3v}	C_{2v}
$q(\mathbf{C})^{b}$	-0.28	-0.59	-0.61	-0.82	-0.72
$q(Ta)^b$	0.58	1.16	1.12	1.19	1.89
$q(H_1)^b$	-0.02	0.01	-0.04	0.07	0.06
$q(H_2)^b$	0.00	0.05	0.06	-0.48	0.02
$q(H_3)^b$	0.00	-0.30	-0.27	-0.48	0.02
$q(H_4)^b$	-0.29	-0.33	-0.27	-0.48	-0.32
μ^{c}	1.41	0.59	2.37	2.78	0.88
state ^d	${}^{4}A''$	^{2}A	$^{2}A'$	${}^{1}A_{1}$	${}^{2}A_{2}$
ΔE^e	20.6	29.2	27.2	70.8 (60.9 ^f)	58.5

^{*a*} Bond lengths and angles are in Å and degree. Calculated at the level B3LYP/6-311++G(3df,3pd)/SDD. ^{*b*} Mulliken atomic charge. ^{*c*} Molecular dipole moment in D. ^{*d*} Electronic state. ^{*e*} Binding energies in kcal/mol relative to CH₃F and Ta (⁶D). ^{*f*} Binding energy in kcal/mol relative to CH₃F and ⁵Ta⁻ (⁵D).

bonds are slightly shorter in configuration 1 than in configuration 2. The C=Ta bond length of 1.913 and 1.877 Å in configurations 1 and 2 are in the 1.87-2.09 Å range of bond lengths for large Ta alkylidene complexes.¹ The observed frequencies are compared with the predicted frequencies for configurations 1 and 2 in Table 8a,b, respectively.

The **i** absorption at 1726.2 cm⁻¹ on the red side of the **m** hydrogen stretching absorptions also increases upon UV and full arc irradiation but decreases upon annealing, as shown in Figures 6-9. The ¹³C substitution leads to a negligible shift, but deuteration leads to a shift of -489.4 cm^{-1} (H/D isotopic shift of 1.396). We assign these absorptions of the isotopomers to the monohydrido insertion product, CH3-TaH, following the case of Nb + CH₄. The predicted frequencies and intensities are compared with the observed values in Table 10. The metalhydrogen stretching band is far stronger than the other modes, and the predicted frequencies for the isotopomers show a good agreement with the observed values. The calculated structure of CH₃-TaH is shown in Figure 13, which is like CH₃-VH and CH₃-NbH structures in Figures 10 and 11. The predicted C-Ta bond length of 2.150 Å is longer and slightly shorter than those of 2.074 and 2.154 Å for CH₃-VH and CH₃-NbH, respectively. The C-Ta bond length is also compared to that of 2.165 Å for Cp'Ta(CHSiMe₃)(CH₂SiMe₃)₂.¹

A new absorption marked **a** is observed at 1567.8 cm⁻¹, substantially lower than the **m** absorption but still in the Ta–H stretching region, as shown in Figure 6, whereas two **a** absorptions emerge in the Ta–D stretching region, as shown in Figure 7, suggesting that the weak, high-frequency component of the Ta–H stretching absorption pair is overlapped by the stronger water residue absorptions. Two more diagnostic absorptions marked **a** are observed 917.6 and 574.6 cm⁻¹ in the Ta + CH₄ spectra. The ¹³C and D substitutions give

frequency shifts of 0.1 and -441.2 cm^{-1} (H/D isotopic ratio of 1.391) for the hydrogen stretching band at 1567.8 cm⁻¹. The absorption at 917.6 cm⁻¹ sustains shifts of -28.6 and -54.8 cm^{-1} on ¹³C and D substitution ($^{12}\text{C}/^{13}\text{C}$ and H/D ratios of 1.032 and 1.064), respectively. The large ^{13}C shift indicates the band originates from a vibrational mode including a large displacement of the carbon atom, and the frequency much higher than those expected for the C–Ta and C=Ta groups suggests that the band arises from the stretching mode of a carbon–metal triple bond (C=Ta).

The **a** absorptions increase about 15% upon visible but decrease 60% on full arc irradiations, respectively. More importantly, they deplete completely on addition of a trace of CBr₄, which is very effective in removing electrons produced in the laser-ablation process,²⁶ which indicates that these absorptions belong to an anionic product of Ta + CH₄ reaction. On the basis of the observed vibrational frequencies, this anionic product is identified as the tantalum methylidyne trihydride anion complex (CH=TaH₃⁻) in line with the Nb case. The heavier group 5 transition metals form anionic alkylidyne complexes is based on the electronic structures of the metal anions being isoelectronic to those of group 6 transition-metal atoms, which are known to form various alkylidyne complexes.¹

Figure 14 displays the relative energies of the plausible products relative to $Ta({}^{4}F_{3/2}) + CH_4$, where the most stable primary neutral products are CH_3 -TaH and CH_2 =TaH₂ in the quartet and doublet ground states, respectively. Clearly CH=TaH₃⁻ in its singlet ground state is the most stable reaction product among the plausible anionic products, parallel to the case with Nb. Figure 14 also shows that neutral CH=TaH₃ formed by loss of an electron from CH=TaH₃⁻ is very unstable relative to more plausible neural products and probably ends up with formation of a more stable product. Therefore, the increase of CH_2 =TaH₂ upon UV and full arc irradiations shown in Figures 6–8 results at least partly from the decrease of the anionic methylidyne complex, CH=TaH₃⁻, and Ta undergoes reactions analogous to (2) and (3).

Clearly the anion product of the Ta reaction with methane is more stable than the Nb counterpart, resulting in stronger anion product absorptions and allowing observation of the weaker lowfrequency bands of the anionic species. This suggests that electron capture is more efficient in the Ta than in the Nb methylidene complex, reaction 3. Like the CH≡NbH₃⁻ counterpart, CH=TaH₃⁻ has a C_{3v} structure as shown in Figure 13. Previous studies report that the simple methylidyne trihydride complexes of group 6 transition metals also have $C_{3\nu}$ structures.^{12,13} Due to the high bond order, the carbon-tantalum bond (1.822 Å) is shorter than those of CH₃-TaH (2.150 Å) and $CH_2 = TaH_2$ (1.913 Å), but comparable to those of $CH = NbH_3^-$ (1.797 Å) and CH=WH₃ (1.742 Å). The C=Ta bond length of the anionic complex is also compared to the C=Ta bond length (1.849 Å) in $Ta(\eta^5-C_5Me_5)(CPh)(PMe_3)_2Cl$,⁴⁵ and to that calculated for the CH=TaH₃⁻ anion (1.80 Å) at the MC/LMO/ CI level of theory.²¹

The absorptions marked **di** are observed at 1787.8 and 1761.4 $\rm cm^{-1}$ on the blue side of the **m** absorptions in the Ta–H stretching region, as shown in Figures 6–9. They increase on photolysis (particularly UV and full arc) and in the early stage of annealing. More importantly, their relative intensities to the other sets of absorptions become much stronger at higher concentration of the precursor as shown in Figure 9, indicating that they arise from a high-order reaction product. The ¹³C

Figure 14. Energies of neutral and anionic products relative to $Ta(^{6}D)$ + CH_4 . Note that CH_3 -TaH(Q) and CH_2 = $TaH_2(D)$ are the most stable ones among the plausible neutral primary products. Formation of the high-order product, $(CH_3)_2TaH_2(D)$, brings further stabilization. Also note that CH= $TaH_3^-(S)$ is the most stable one among the plausible anionic products. S, D, and Q denote singlet, doublet, and quartet states.

substitution leads to negligible shifts, whereas deuteration gives frequency shifts of -511.4 and -501.1 cm⁻¹ (H/D isotopic ratios of 1.400 and 1.398). In the Ta reaction with CH₂D₂, the single broad intermediate band at 1772 cm⁻¹ suggests a slight difference in the Ta-H bonds. These hydrogen stretching absorptions are assigned to a high-order reaction product, (CH₃)₃TaH₂, in line with the case of (CH₃)₃NbH₂.

This confirms the fact that group 5 transition metals, similar to group 4 transition metals, form the dimethyl dihydride complexes $(CH_3)_2MH_2$, but the hydrogen stretching absorptions are much weaker with group 5 than with group 4.^{1–8} On the other hand, no **di** absorptions are observed in the spectra from reaction of group 6 transition metals with methane or methyl halides in earlier studies.^{12–15}

(CH₃)₂TaH₂ has a calculated $C_{2\nu}$ structure like the Nb counterpart, as shown in Figure 13, and the observed hydrogen stretching frequencies match well with the predicted values as shown in Table 11. The binding energy of (CH₃)TaH₂ is 29 and 38 kcal/mol larger than those of CH₂=TaH₂ and CH₃-TaH, respectively, and both of them are expected to form the high-order product. The methane activation energies for the methylidene dihydride complexes of group 4 transition metals are much higher than those of group 5 and 6 transition metals $[\Delta E = -37, -44, -51 \text{ kcal/mol for Ti, Zr, Hf are compared to -28 and -29 \text{ kcal/mol for Nb and Ta and -27 and -28$

kcal/mol for Mo and W, respectively]. Kaupp predicted first the $C_{2\nu}$ structure of dimethyl titanium dichloride and argued that the influence of ligand-to-metal π -bond should be very important on the bond angles.⁴⁶ However, we have shown more recently that the bond angles of (CH₃)₂TiF₂ and (CH₃)₂TiBr₂ are very close to those of (CH₃)₂TiCl₂.¹⁻⁴

Group 4–6 Trends. The results in the present and previous matrix isolation studies involving the reactions of groups 4-6transition metal atoms with methane and methyl halides provide the following trends. On going down the column, highoxidation-state complexes are more favored. The first row transition metals form the mono-insertion product (CH₃MX) primarily or even exclusively.^{4,7,11,13,15} The high-oxidation-state complexes are mostly formed in the process of photolysis afterward (if formed).^{4,7} On the other hand, the high-oxidationstate complexes as well as the mono-insertion products are formed by the second row transition metals. The high-oxidationstate products are even more favored by the third row transition metals, and in some cases, the mono-insertion products are not identified in the spectra.^{6,10} This tendency is due to the fact that the high-oxidation-state complexes become more stable relative to the mono-insertion products on going down the column.

The neutral methylidyne complexes are produced only by group 6 transition metals in reactions with methane and methyl halides,^{12–15} whereas the isoelectronic anionic methylidyne complexes are formed by group 5 transition metals. The group 5 transition-metal atom becomes isoelectronic to group 6 transition-metal atom in the same row by gaining one electron, and this suggests that the electronic structures of group 6 transition metals are essential to form the methylidyne complexes. On the other hand, the higher-order complexes $((CH_3)_2MX_2)$ are more readily formed by group 4 than group 5 transition metals,⁴⁻¹¹ whereas no evidence for the higher-order products of group 6 transition metals has been observed.^{12–15} The high reactivity of group 4 transition metals to form the $(CH_3)_2MX_2$ probably originate at least partly from the large ΔE 's of formation.

Conclusions

Reactions of laser-ablated group 5 transition-metal atoms with methane in excess argon have been carried out during condensation at 8 K. Vanadium is very reactive with CH₄ and also selective in that only CH₃-VH was observed. On the other hand, four sets of product absorptions (marked m, i, a, and di) were observed for each heavier metal on the basis of their spectroscopic characteristics and variations upon photolysis, annealing, and addition of a trace of CCl4 or CBr4. The m and i absorptions increase upon photolysis and decrease gradually upon annealing, and they are assigned to the primary neutral C-H insertion products, CH₂=MH₂ and CH₃-MH. The **a** absorptions decrease upon UV irradiation and more importantly, disappear completely upon addition of a trace of CCl₄ or CBr₄, which indicates anionic products. Thus, the methylidyne trihydride anion complexes, CH=MH₃⁻, are identified. The **di** absorptions are hardly discernible in the original spectrum but become more apparent in the process of photolysis and annealing, and they become relatively much stronger at higher concentration of the precursor. The di absorptions are assigned to a higher-order reaction products, (CH₃)₃MH₂. The assignments are confirmed by isotopic substitution and agreement with frequencies calculated using density functional theory.

The present results show that like group 4 and 6 transition metal atoms, the group 5 transition metal atoms readily form the C-H insertion products in reactions with methane. Group 5 transition-metal methylidyne systems are rare, and CH=NbH₃⁻ and CH= TaH_3^- are believed to be the first group 5 transitionmetal methylidyne trihydride anion complexes. Calculations show that there are two stable configurations (C_s and C_1) with similar energies for the doublet methylidene complexes, CH₂=MH₂, in both of which the CH₂ groups are distorted owing to agostic interaction. However, CCSD calculations suggest that multiconfiguration methods will be required to describe more accurately the molecular structures.

Acknowledgment. We gratefully acknowledge financial support from NSF Grant CHE 03-52487 to L.A.

References and Notes

(1) Schrock, R. R. Chem. Rev. 2002, 102, 145.

(2) Schrock, R. R. J. Am. Chem. Soc. 1974, 96, 6796. 1975, 97, 6577.

- (3) McLain, S. J.; Wood, C. D.; Messerle, L. W.; Schrock, R. R.; Hollander, F. J.; Youngs, W. J.; Churchill, M. R. J. Am. Chem. Soc. 1978, 100. 5962
- (4) Cho, H.-G.; Andrews, L. J. Phys. Chem. A 2004, 108, 6294 (Ti + CH₃F).
- (5) Cho, H.-G.; Andrews, L. J. Am. Chem. Soc. 2004, 126, 10485 (Zr $+ CH_3F$).
- (6) Cho, H.-G.; Andrews, L. Organometallics 2004, 23, 4357 (Hf + CH₃F).
- (7) Cho, H.-G.; Andrews, L. Inorg. Chem. 2005, 44, 979 (Ti + CH₃X). (8) Andrews, L.; Cho, H.-G.; Wang, X. Angew. Chem., Int. Ed. 2005,
- 44, 113 (Zr + CH₄). (9) Cho, H.-G.; Wang, X.; Andrews, L. J. Am. Chem. Soc. 2005, 127, $465 (Zr + CH_4).$
- (10) Cho, H.-G.; Wang, X.; Andrews, L. Organometallics 2005, 24, 2854 $(Hf + CH_4).$
- (11) Andrews, L.; Cho, H.-G.; Wang, X. Inorg. Chem. 2005, 44, 4834 $(Ti + CH_4).$
- (12) Cho, H.-G.; Andrews, L. J. Am. Chem. Soc. 2005, 127, 8226 (Mo $+ CH_4$).
- (13) Cho, H.-G.; Andrews, L.; Marsden, C. Inorg. Chem. 2005, 44, 7634 $(Cr, W + CH_4)$
- (14) Cho, H.-G.; Andrews, L. Chem. Eur. J. 2005, 11, 5017 (Mo + CH₃F).
- (15) Cho, H.-G.; Andrews, L. Organometallics 2005, 24, 5678 (W + CH₃F).
 - (16) Tran, E.; Legzdins, P. J. Am. Chem. Soc. 1997, 119, 5071.
 - (17) Buchmeiser, M. R. Chem. Rev. 2000, 100, 1565.
 - (18) Cho, H.-G.; Andrews, L. Organometallics 2006, 25, 477.
- (19) Franci, M. M.; Pietro, W. J.; Hout, R. F., Jr.; Hehre, W. J. Organometallics 1983, 2, 281, 815.
 - (20) Dobbs, K. D.; Hehre, W. J. J. Am. Chem. Soc. 1986, 108, 4663. (21) Cundari, T. R.; Gordon, M. S. J. Am. Chem. Soc. 1992, 114, 539.

(22) Chung, G.; Gordon, M. S. Organometallics 2003, 22, 42.

(23) Duncalf, P. J.; Harrison, R. J.; McCamley, A.; Royan, B. W. J.

Chem. Soc., Chem. Commun. 1995, 2421. (24) (a) Liu, X.; Li, L.; Diminnie, J. B.; Yap, G. P.A.; Rheingold, A.

L.; Xue, Z. Organometallics 1998, 17, 4597. (b) Riley, P. N.; Thorn, M. G. Vilardo, J. S.; Lockwood, M. A.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1999, 18, 3016.

(25) Zhou, M. F.; Andrews, L. J. Phys. Chem. A 1998, 102, 8251.

(26) Andrews, L.; Citra, A. Chem. Rev. 2002, 102, 885 and references therein.

(27) Wang, X.; Andrews, L. J. Phys. Chem. A 2003, 107, 570.

(28) (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.;. Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision B.04; Gaussian, Inc.: Pittsburgh, PA, 2003 (see also references therein). (b) Stevens, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. *J. Phys. Chem.* **1994**, *98*, 11623. (c) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. *J. Chem. Phys.* **1980**, *72*, 650. (d) Frisch, M. J.; Pople, J. A.; Binkley, J. S. *J. Chem. Phys.* **1984**, *80*, 3265. (e) Andrae, D.; Haussermann, U.; Daly, M.; Stoll, H.; Preuss, H. *Theor. Chim. Acta* **1990**, *88*, 123.

- (29) Jacox, M. E. J. Mol. Spectrosc. 1977, 66, 272.
- (30) (a) Van Zee, R. J.; Weltner, W., Jr. J. Chem. Phys. **1995**, 102, 4367. (b) Wang, X.; Andrews, L. Unpublished data (Nb, Ta + H₂).
- (31) Xiao, Z. L.: Hauge, R. H.; Margrave, J. L. J. Phys. Chem. 1991, 95, 2696.
 - (32) Aristov, N.; Armentrout, P. B. J. Phys. Chem. 1987, 91, 6178.
 (33) De Vore, T. C. J. Chem. Phys. 1975, 62, 520.
- (34) Vivanco, M.; Ruiz, J.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Organometallics **1993**, *12*, 1794 (V complex for C-V length).
- (35) Green, D. W.; Gruen, D. M. J. Chem. Phys. 1972, 57, 4462.
 (36) Lee, T. J.; Taylor, P. R.; Int. J. Quantum Chem. Symp. 1989, 23, 199.
- (37) Billups, W. E.; Konarski, M. M.; Hauge, R. H.; Margrave, J. L. J. Am. Chem. Soc. **1980**, 102, 7394.

(38) Klabunde, K. J.; Jeong, G. H.; Olsen, A. W. In *Selective Hydrocarbon Activation: Principles and Progress*; Davies, J. A, Watson, P. L., Greenberg, A., Liebman, J. F., Eds.; VCH Publishers: New York, 1990; pp 433–466.

- (39) Bloomberg, M. R. A.; Siegbahn, P. E. M.; Swensson, M. J. Am. Chem. Soc. 1992, 114, 6095.
- (40) Jaffart. J.; Etienne, M.; Maseras, F.; McGrady, J. E.; Eisenstein, O. J. Am. Chem. Soc. 2001, 123, 6000.

(41) Pyykko, P. Chem. Rev. 1988, 88, 563.

- (42) Graham, W. R. M.; Weltner, W., Jr. J. Chem. Phys. 1972, 56, 4400 (Ta absorption).
- (43) Ujaque, G.; Cooper, A. C.; Maseras, F.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. **1998**, 120, 361.
- (44) Scherer, W.; McGrady, G. S. Angew. Chem., Int. Ed. 2004, 43, 1782.
- (45) McLain, S. J.; Wood, C. D.; Messerle, L. W.; Schrock, R. R. J. Am. Chem. Soc. **1978**, 100, 5962 (C≡Ta bond length).
- (46) Kaupp, M. Chem. Eur. J. 1999, 5, 3631.